Solubilities of common ions

- A compound is soluble if it dissolves in water to give a solution with a concentration of at least 0.1 moles per liter at room temperature.
- A compound is insoluble if the concentration of an aqueous solution is less than 0.001 M at room temperature.
- Slightly soluble compounds give solutions that fall between these extremes.
- There are alternative definitions in use as well (e.g. if more than 1g dissolves in 100g of water it's soluble)
- The following tables assume a solution temperature of 25°C.

Compounds with these ions are soluble		except when combined with:
Group IA metals	Li^+ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺	*
Ammonium	NH4 ⁺	
Nitrate	NO ₃ ⁻	
Acetate	$C_2H_3O_2^-$	
Perchlorate	CIO ₄	
Chlorate	CIO ₃ ⁻	
Halides except fluoride	Cl ⁻ , Br ⁻ , l ⁻	Ag ⁺ , Pb ²⁺ , Hg ₂ ²⁺
Sulfate	SO ₄ ²⁻	Ag ⁺ **, Pb ²⁺ , Hg ₂ ²⁺ , Ca ²⁺ , Ba ²⁺ , Sr ²⁺

* Li_3PO_4 is only very slightly soluble (very close to the "insoluble" limit)

** Ag₂SO₄ is slightly soluble

Compounds with these ions are insoluble		except when combined with:
Carbonate	CO ₃ ²⁻	Group IA metals and NH_4^+
Phosphate	PO ₄ ³⁻	Group IA metals (except Li^{\dagger})* and NH_4^{\dagger}
Chromate	CrO ₄ ²⁻	Group IA metals and NH_4^+
Sulfide	S ²⁻	Group IA metals and NH ₄ ⁺ ; Group IIA metals***
Hydroxide	OH	Group IA, NH ₄ ⁺ **, Ba ²⁺ soluble; Ca ²⁺ and Sr ²⁺ slightly soluble

** NH₄OH does not exist as a compound. However, NH_4^+ and OH⁻ can exist in solution together, such as when NH₃ (ammonia, a weak base) dissolves in water and some NH₃ molecules grab an H⁺ from water to produce NH_4^+ and OH⁻. Aqueous ammonia solutions are often labeled as NH_4OH even though most of the ammonia would be in NH₃ form.

*** Sulfides of Group IIA metals react with water. CaS, BaS, and SrS are soluble to varying degrees, but they are ultimately not stable in water.