- 43) Write an equilibrium expression for each chemical equation.
 - (a) $2 \text{ NO}_2(g) \rightleftharpoons \text{N}_2\text{O}_4(g)$
 - **(b)** $2 \operatorname{BrNO}(g) \Longrightarrow 2 \operatorname{NO}(g) + \operatorname{Br}_2(g)$
 - (c) $H_2O(g) + CO(g) \Longrightarrow H_2(g) + CO_2(g)$
 - (d) $CH_4(g) + 2H_2S(g) \implies CS_2(g) + 4H_2(g)$
- 45) Write an equilibrium expression for each chemical equation involving one or more solid or liquid reactants or products.
 - (a) $PCl_5(g) \Longrightarrow PCl_3(l) + Cl_2(g)$
 - (b) $2 \text{ KClO}_3(s) \rightleftharpoons 2 \text{ KCl}(s) + 3 \text{ O}_2(g)$
 - (c) $HF(aq) + H_2O(l) \implies H_3O^+(aq) + F^-(aq)$
 - (d) $NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$
- 49./For each equilibrium constant, indicate if you would expect an equilibrium reaction mixture to be dominated by reactants or by products, or to contain significant amounts of both.
 - (a) $K_{\rm eq} = 5.2 \times 10^{17}$

 - (b) $K_{\text{eq}} = 3.2 \times 10^{-10}$ (c) $K_{\text{eq}} = 3.22 \times 10^{-21}$ (d) $K_{\text{eq}} = 0.47$
- **51.** Consider the reaction.

$$COCl_2(g) \Longrightarrow CO(g) + Cl_2(g)$$

An equilibrium mixture of this reaction at a certain temperature has $[COCl_2] = 0.225 \,\mathrm{M}$, $[CO] = 0.105 \,\mathrm{M}$, and $[Cl_2] = 0.0844 M$. What is the value of the equilibrium constant at this temperature?

55) Consider the reaction.

$$NH_4HS(s) \Longrightarrow NH_3(g) + H_2S(g)$$

An equilibrium mixture of this reaction at a certain temperature has $[NH_3] = 0.278 \,\text{M}$ and $[H_2S] = 0.355 \,\text{M}$. What is the value of the equilibrium constant at this temperature?

61. Consider the reaction:

$$N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g)$$

Complete the table. Assume that all concentrations are equilibrium concentrations in moles per liter, M.

T(K)	[N ₂]	[H ₂]	[NH ₃]	K _{eq}
500	0.115	0.105	0.439	
575	0.110		0.128	9.6
775	0.120	0.140		0.0584

63. Consider this reaction at equilibrium.

$$CO(g) + Cl_2(g) \Longrightarrow COCl_2(g)$$

Predict the effect (shift right, shift left, or no effect) of these changes.

- (a) adding Cl₂ to the reaction mixture
- (b) adding COCl₂ to the reaction mixture
- adding CO to the reaction mixture

65 Consider this reaction at equilibrium.

$$C(s) + H_2O(g) \Longrightarrow CO(g) + H_2(g)$$

Predict the effect (shift right, shift left, or no effect) of these changes.

- (a) adding C to the reaction mixture
- (b) condensing H₂O and removing it from the reaction
- (c) adding CO to the reaction mixture
- (d) removing H₂ from the reaction mixture
- 67) Consider the effect of a volume change on this reaction at equilibrium.

$$I_2(g) \Longrightarrow 2 I(g)$$

Predict the effect (shift right, shift left, or no effect) of these changes.

- (a) increasing the reaction volume
- (b) decreasing the reaction volume
- 69. Consider the effect of a volume change on this reaction at equilibrium.

$$I_2(g) + Cl_2(g) \Longrightarrow 2 ICl(g)$$

Predict the effect (shift right, shift left, or no effect) of these changes.

- (a) increasing the reaction volume
- (b) decreasing the reaction volume
- **71.** This reaction is endothermic.

$$C(s) + CO_2(g) \Longrightarrow 2 CO(g)$$

Predict the effect (shift right, shift left, or no effect) of these changes.

- (a) increasing the reaction temperature
- (b) decreasing the reaction temperature
- **73.** This reaction is exothermic.

$$C_6H_{12}O_6(s) + 6 O_2(g) \Longrightarrow 6 CO_2(g) + 6 H_2O(g)$$

Predict the effect (shift right, shift left, or no effect) of these changes.

- (a) increasing the reaction temperature
- (b) decreasing the reaction temperature
- 75. Coal, which is primarily carbon, can be converted to natural gas, primarily CH₄, by this exothermic reaction.

$$C(s) + 2 H_2(g) \Longrightarrow CH_4(g)$$

If this reaction mixture is at equilibrium, predict the effect (shift right, shift left, or no effect) of these changes.

- (a) adding more C to the reaction mixture
- (b) adding more H₂ to the reaction mixture
- (c) raising the temperature of the reaction mixture
- (d) lowering the volume of the reaction mixture
- adding a catalyst to the reaction mixture