A Partial Activity Series of the Elements

Oxidation Reaction

Strongly reducing

$$Li \rightarrow Li^+ + e^-$$

 $K \rightarrow K^+ + e^-$

$$K \rightarrow K^+ + e^-$$

Ba $\rightarrow Ba^{2+} + 2e^-$

$$Ca \rightarrow Ca^{2+} + 2e^{-}$$

$$Na \rightarrow Na^+ + e^-$$

These elements react rapidly with aqueous H⁺ ions (acid) or with liquid H₂O to release H₂ gas.

$$Mg \rightarrow Mg^{2+} + 2e^{-}$$

$$Al \rightarrow Al^{3+} + 3e^{-}$$

$$Mn \rightarrow Mn^{2+} + 2e^{-}$$

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

$$Cr \rightarrow Cr^{3+} + 3e^{-}$$

$$Fe \rightarrow Fe^{2+} + 2e^{-}$$

These elements react with aqueous H^+ ions or with steam to release H_2 gas.

$$Co \rightarrow Co^{2+} + 2e^{-}$$

$$Ni \rightarrow Ni^{2+} + 2e^{-}$$

Sn
$$\rightarrow$$
 Sn²⁺ + 2e⁻

These elements react with aqueous H^+ ions to release H_2 gas.

$$H_2 \ \to \ 2 \, H^+ \, + \, 2 \, e^-$$

$$Cu \rightarrow Cu^{2+} + 2e^{-}$$

$$Ag \rightarrow Ag^{+} + e^{-}$$

$$Hg \rightarrow Hg^{2+} + 2e^{-}$$

Pt
$$\rightarrow$$
 Pt²⁺ + 2e⁻

$$Au \rightarrow Au^{3+} + 3e^{-}$$

These elements do not react with aqueous H^+ ions to release H_2 .

Weakly reducing